
WiFi

Connecting	Arduinos	to	the	internet
Enable	native	scrolling

1/14

ESP8266

To	connect	the	Arduinos	to	a	WiFi	network	we	will	be	using	ESP8266	shields
We	will	be	using	AT	commands	to	control	the	ESPs

The	ESP8266	chips	could	also	be	programmed	directly	as	they	contain	a	microcontroller
that	is	much	more	powerful	than	the	Arduino

Do	not	reflash	the	ESP	shields	provided	in	the	course

2/14
Testing	the	shields

3/14

Testing

To	check	if	your	shield	is	working	correctly	disconnect	the	USB-cable	from	your	Arduino

1	 esp_client.begin(
2	 				&esp_serial,	"GDI",	"password",
3	 				"192.168.42.42",	30303
4	 );

and	copy	this	program	into	the	Arduino	IDE,	scroll	down	to	the	setup	function	and	adapt
the	IP	address	to	one	provided	by	your	tutor

4/14

Testing

Connect	the	RGB-Led	to	the	pins	on	the	WiFi-shield	that	will	be	plugged	into	the	following
Arduino	pins:

R	-	9	/	G	-	10	/	B	-	11	/	GND	-	GND
Carefully	plug	the	WiFi-shield	into	your	Arduino	and	reconnect	the	USB-cable

5/14

https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_rgb_demo.ino


Testing

1	 self.coro=	aio.start_server(
2	 				self.handle_client,
3	 				None,
4	 				30303,
5	 				loop=	self.loop
6	 )

Your	Tutor	is	running	this	program,	it	provides	a	TCP-server	for	your	Arduino	to	connect	to
It	then	sends	periodic	color	updates	to	every	Arduino	connected

6/14
The	test	code	on	the	previous	slides	used	a	python	server	and	an	Arduino	client

Arduino	---connects	to-->	Python

To	prevent	issues	with	firewalls	and	NATs	from	now	on	the	Arduino	will	act	as	a	server	and
the	python	code	will	connect	to	it
Python	---connects	to-->	Arduino

7/14
The	following	slides	will	provide	you	with	an	Arduino	library	to	use	the	WiFi	shield	as	a

Server
The	library	allows	exactly	one	connection	and	does	not	perform	any	error	checking,	this	is

why	it	is	called	DumbServer

8/14

file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_rgb_demo.py
https://en.wikipedia.org/wiki/Network_address_translation


DumbServer.cpp

Use	the	"New	Tab"	option	in	the	Arduino	IDE	to	create	the	files	DumbServer.h	and
DumbServer.cpp

Paste	the	contents	of	DumbServer.h	/	DumbServer.cpp	into	the	respective	files
Paste	the	content	of	ServerExample.ino	into	the	main	sketch	file

9/14

DumbServer.cpp

Flash	the	sketch	to	your	Arduino	and	open	the	Serial	Monitor
Starting	server...

...server	is	running

My	ip:	192.168.42.123

If	the	ESP	was	able	to	connect	to	the	WiFi	access	point	the	Serial	Monitor	should	display	a
message	like	the	one	above

We	will	be	needing	the	IP-address	that	is	shown	later	on

10/14

socket.py

Open	an	interactive	python	session	and	enter	the	following	commands
Replace	the	IP-address	with	the	one	found	previously

1	 import	socket
2	
3	 s=	socket.socket()
4	 s.connect(('192.168.42.123',	30303))
5	 s.setblocking(False)
6	
7	 s.send(b'Hello	World\n')
8	
9	 s.recv(1024)

Check	if	the	observed	behaviour	matches	the	Arduino	sketch

11/14

file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_dumb_server.h
file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_dumb_server.cpp
file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_server_example.ino


On	the	following	slides	you	will	see	an	example	on	how	to	work	with	sockets	in	a	graphical
program

12/14

sockets	&	GUIs

1	 while(esp_server.available())	{
2	 				String	command=	esp_server.readStringUntil('\n');
3	 				digitalWrite(13,	(command	==	"on")	?	HIGH	:	LOW);
4	 }

…
Flash	the	code	above	onto	your	Arduino

Connect	Arduino	pin	13	to	an	LED	and	pin	12	to	GND
Note:	DumbServer.h/.cpp	are	needed	to	compile	the	program

13/14

sockets	&	GUIs

$	python3	22_light_center.py
Hostname:	192.168.42.123
Port:	30303

Run	the	GUI	code	and	provide	it	with	the	correct	IP-address

14/14

file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_light_center.ino
file:///home/leonard/Dokumente/Code/GDI-Tutorials/target/examples/22_light_center.py

